
Domination Game Documentation
Release 1.3.1

Thomas van den Berg and Tim Doolan

October 26, 2015

Contents

1 Intro 1

2 Contents 3
2.1 Running a Game . 3
2.2 Creating Agents . 6
2.3 Using Scenarios . 10
2.4 Customizing the Field . 11
2.5 Utilities . 13

3 Quickstart 15

4 Indices and tables 17

Python Module Index 19

i

ii

CHAPTER 1

Intro

The domination game is a game played by two teams of agents. They will combat one another and accumulate points
through capturing control points on the map. The team with the most agents on a control point will capture that control
point. These control points remain captured by the same team even when left alone. Agents are capable of picking
up ammo, that spawns at designated positions on the map, and use it to shoot other agents. Upon death, agents will
respawn in their teams’ designated spawn areas. Agents can freely roam the map, but are unable to walk through walls
or other agents.

Within one iteration an agent can turn, change its speed, and shoot (in that order). To assure that simulations can
terminate in reasonable time, there is a reaction time limit per iteration per agent. Simply, if the agent exceeds this
limit it will not do anything. Map layouts (walls, control points and such) are known at the start of the game, but other
info are not commonly known and have to be observed by the agents (ammopacks and agents).

1

Domination Game Documentation, Release 1.3.1

2 Chapter 1. Intro

CHAPTER 2

Contents

2.1 Running a Game

In order to run a game, you need to import the domination module, and either create a Scenario, or create a Game
object directly.

2.1.1 Creating a Game object directly

The simplest way you can use the game object, is to just instantiate it and call its run() method. This will run a game
with all its default settings:

from domination import core
core.Game(rendered=True).run() # Set rendered=False if you don't have pygame.

However, creating a game object directly is useful mainly if you want to do some fiddling with its internals, so we
recommend skipping right to Creating Agents or Using Scenarios.

If we like, we can mess around a bit with the game object and its properties:

from domination import core

Make it a short game
settings = core.Settings(max_steps=20)

Initialize a game
game = core.Game('domination/agent.py','domination/agent.py',

record=True, rendered=False, settings=settings)

Will run the entire game.
game.run()

And now let's see the replay!
replay = game.replay
playback = core.Game(replay=replay)
playback.run()

2.1.2 Game

The Game class has the following specification.

3

Domination Game Documentation, Release 1.3.1

class domination.core.Game(red=<open file ‘/home/docs/checkouts/readthedocs.org/user_builds/domination-
game/checkouts/stable/domination/agent.py’, mode ‘r’>, blue=<open
file ‘/home/docs/checkouts/readthedocs.org/user_builds/domination-
game/checkouts/stable/domination/agent.py’, mode ‘r’>, red_init={},
blue_init={}, settings=Settings(), field=None, record=False, re-
play=None, rendered=True, verbose=True, step_callback=None)

The main game class. Contains game data and methods for simulation.

Constructor for Game class

Parameters

• red – Descriptor of the red agent. Can be either a path, an open file, a string with the class
definition, or an instance of Team

• blue – Descriptor of the blue agent

• red_init – A dictionary of keyword arguments passed to the red agent constructor.

• blue_init – Like red_init.

• settings – Instance of the settings class.

• field – An instance of Field to play this game on.

• record – Store all actions in a game replay.

• replay – Pass a game replay to play it.

• rendered – Enable/disable the renderer.

• verbose – Print game log to output.

• step_callback – Function that is called on every step. Useful for debugging.

log = None
The game log as an instance of class:~domination.core.GameLog

replay = None
The replay object, can be accessed after game has run

stats = None
Instance of GameStats.

red = None
Instance of Team.

blue = None
Instance of Team.

run()
Start and loop the game.

class domination.core.GameStats

score_red = None
The number of points scored by red

score_blue = None
The number of points scored by blue

score = None
The final score as a float (red/total)

4 Chapter 2. Contents

Domination Game Documentation, Release 1.3.1

steps = None
Number of steps the game lasted

ammo_red = None
Number of ammo packs that red picked up

ammo_blue = None
Idem for blue

deaths_red = None
Number red agents that got shot

deaths_blue = None
Number blue agents that got shot

think_time_red = None
Total time in seconds that red took to compute actions

think_time_blue = None
Idem for blue

2.1.3 Replays

Running replays is easy, first you need to unpack them:

>>> import pickle
>>> from domination import core
>>> rp = pickle.load(open('replay20120215-1341_t2v1_vs_t6v1.pickle','rb'))
>>> print rp
<domination.core.ReplayData object at 0x10fca5fd0>

Then you call the play method:

>>> rp.play()

class domination.core.ReplayData(game)
Contains the replaydata for a game.

play()
Convenience method for setting up a game to play this replay.

2.1.4 Settings

class domination.core.Settings(max_steps=600, max_score=1000,
max_turn=1.0471975511965976, max_speed=40, max_range=60,
max_see=100, field_known=True, ammo_rate=20,
ammo_amount=3, agent_type=’tank’, spawn_time=10, tilesize=16,
think_time=0.01, capture_mode=0, end_condition=1)

Constructor for Settings class

Parameters

• max_steps – How long the game will last at most

• max_score – If either team scores this much, the game is finished

• max_speed – Number of game units each tank can drive in its turn

• max_turn – The maximum angle that a tank can rotate in a turn

2.1. Running a Game 5

Domination Game Documentation, Release 1.3.1

• max_range – The shooting range of tanks in game units

• max_see – How far tanks can see (Manhattan distance)

• field_known – Whether the agents have knowledge of the field at game start

• ammo_rate – How long it takes for ammo to reappear

• ammo_amount – How many bullets there are in each ammo pack

• agent_type – Type of the agents (‘tank’ or ‘vacubot’)

• spawn_time – Time that it takes for tanks to respawn

• think_time – How long the tanks have to do their computations (in seconds)

• capture_mode – One of the CAPTURE_MODE constants.

• end_condition – One of the ENDGAME flags. Use bitwise OR for multiple.

• tilesize – How big a single tile is (game units), change at risk of massive bugginess

The Settings.capture_mode can be one of:

domination.core.CAPTURE_MODE_NEUTRAL = 0
Controlpoints are neutral when occupied by both teams

domination.core.CAPTURE_MODE_FIRST = 1
Controlpoints stay in control of first team that captures them

domination.core.CAPTURE_MODE_MAJORITY = 2
Controlpoints are owned by the team with the most occupiers

The Settings.end_condition can be one of:

domination.core.ENDGAME_NONE = 0
End game when time expires

domination.core.ENDGAME_SCORE = 1
End game when either team has 0 score

domination.core.ENDGAME_CRUMBS = 2
End game when all crumbs are picked up

2.2 Creating Agents

Writing agents consists of creating a Python class that implements five methods, some of which are optional. The
agents are imported using Python’s exec method, after which the class named Agent is extracted. It is probably easiest
to refer to and modify the default agent. But there is a quick rundown of the functions below as well.

The first thing you need to do is create a new file with a class named Agent that contains these 5 methods:

class Agent(object):

NAME = "my_agent" # Replay filenames and console output will contain this name.

def __init__(self, id, team, settings=None, field_rects=None, field_grid=None, nav_mesh=None, **kwargs):
pass

def observe(self, observation):
pass

def action(self):

6 Chapter 2. Contents

http://docs.python.org/reference/simple_stmts.html#exec
https://github.com/noio/Domination-Game/blob/master/domination/agent.py

Domination Game Documentation, Release 1.3.1

return (0,0,False)

def debug(self, surface):
pass

def finalize(self, interrupted=False):
pass

2.2.1 Initialize

It needs to implement an __init__ method that accepts a number of setup arguments. This method will be called for
each agent at the beginning of each game.

Agent.__init__(id, team, settings=None, field_rects=None, field_grid=None, nav_mesh=None,
blob=None)

Each agent is initialized at the beginning of each game. The first agent (id==0) can use this to set up global
variables. Note that the properties pertaining to the game field might not be given for each game.

The settings object is an instance of Settings, and contains all the game settings such as game length and maximum
score. The field_rects, field_grid, and nav_mesh arguments provide some information about the map that
the game will be played on. The first contains a list of walls on the map as (x,y,width,height) tuples, the
second contains the same information, but as a 2D binary array instead.

Navigation Mesh

Also passed to the agent constructor is a ‘navigation mesh’. This is a directed graph containing the set of points from
which all points on the map can be seen, and the straight lines connecting them. You can use it in conjunction with
find_path() to plan paths.

It is structured as a dictionary where the keys are (x, y) tuples defining connectivity and distances. All connections
are in this dictionary two times, both A → B and B → A are in there. The example below shows a point at (0, 0)
connected to two other points, at (1, 0) and (0 ,2):

{(0, 0): {(1, 0): 1.0,
(0, 2): 2.0},

(1, 0): {(0, 0): 1.0},
(0, 2): {(0, 0): 2.0}}

2.2. Creating Agents 7

Domination Game Documentation, Release 1.3.1

Agent Parameters

Finally, you can provide extra arguments to “parametrize” your agents. You can set these arguments when you start a
new game. For example, if your initialization looks as follows:

def __init__(self, id, team, settings, field_rects, field_grid, nav_mesh, aggressiveness=0.0):

Then you can set this parameter to different values when you start the game:

MyScenario('my_agent.py','opponent.py',red_init={'aggressiveness':10.0}).run()
MyScenario('my_agent.py','opponent.py',red_init={'aggressiveness':20.0}).run()

2.2.2 Observe

The second method you need to implement is observe. This method is passed an observation of the current game
state, depending on the settings, agents usually don’t observe the entire game field, but only a part of it. Agents use
this function to update what they know about the game, e.g. computing the most likely locations of enemies. The
properties of the Observation object are listed below.

Agent.observe(observation)
Each agent is passed an observation using this function, before being asked for an action. You can store either
the observation object or its properties to use them to determine your action. Note that the observation object is
modified in place.

class Observation(object):
def __init__(self):

self.step = 0 #: Current timestep
self.loc = (0,0) #: Agent's location (x,y)
self.angle = 0 #: Current angle in radians
self.walls = [] #: Visible walls around the agent: a 2D binary array
self.friends = [] #: All/Visible friends: a list of (x,y,angle)-tuples
self.foes = [] #: Visible foes: a list of (x,y,angle)-tuples
self.cps = [] #: Controlpoints: a list of (x,y,TEAM_RED/TEAM_BLUE)-tuples
self.objects = [] #: Visible objects: a list of (x,y,type)-tuples
self.ammo = 0 #: Ammo count
self.score = (0,0) #: Current game score
self.collided = False #: Whether the agent has collided in the previous turn
self.respawn_in = -1 #: How many timesteps left before this agent can move again.
self.hit = None #: What the agent hit with its last shot. Can be None/TEAM_RED/TEAM_BLUE
The following properties are only set when
the renderer is enabled:
self.selected = False #: Indicates if the agent is selected in the UI
self.clicked = None #: Indicates the position of a right-button click, if there was one
self.keys = [] #: A list of all keys pressed in the previous turn

def __str__(self):
items = sorted(self.__dict__.items())
maxlen = max(len(k) for k,v in items)
return "== Observation ==\n" + "\n".join(('%s : %r'%(k.ljust(maxlen), v)) for (k,v) in items)

2.2.3 Action

This is the most important function you have to implement. It should return a tuple containing a representation of the
action you want the agent to perform. In this game, the action tuples are supposed to look like (turn, speed,
shoot).

8 Chapter 2. Contents

Domination Game Documentation, Release 1.3.1

• Turn indicates how much your tank should spin around it’s center.

• Speed indicates how much you want your tank to drive forward after it has turned.

• Shoot is set to True if you want to fire a projectile in this turn.

Turn is given in radians, and Speed is given in game units (corresponding to pixels in the renderer). Note that any
exceptions raised by your agent are ignored, and the agent simply loses it’s turn. Turn and speed are capped by the
game settings.

Agent.action()
This function is called every step and should return a tuple in the form: (turn, speed, shoot)

2.2.4 Debug

Allows the agents to draw on the game UI, refer to the pygame reference to see how you can draw on a pygame.surface.
The given surface is not cleared automatically. Additionally, this function will only be called when the renderer is
active, and it will only be called for the active team.

Agent.debug(surface)
Allows the agents to draw on the game UI, Refer to the pygame reference to see how you can draw on a
pygame.surface. The given surface is not cleared automatically. Additionally, this function will only be called
when the renderer is active, and it will only be called for the active team.

2.2.5 Finalize

This method gives your agent an opportunity to store data or clean up after the game is finished. Learning agents could
store their Q-tables, which they load up in __init__.

Agent.finalize(interrupted=False)
This function is called after the game ends, either due to time/score limits, or due to an interrupt (CTRL+C) by
the user. Use it to store any learned variables and write logs/reports.

2.2.6 Communication

The recommended way to establish communication between agents is to define static attributes in the Agent class
definition. Static attributes are variables that are identical for every instance of the class, essentially, they are attributes
of the class, not of the instances.

In Python, static variables can be defined in the class body, and accessed through the class definition. Be careful, setting
Agent.attribute is quite different from setting my_agent = Agent(); my_agent.attribute:

class Agent:
shared_knowledge = 1

def __init__(self, etc):
print Agent.shared_knowledge
is identical to
print self.__class__.shared_knowledge

BUT THIS IS DIFFERENT:
self.shared_knowledge = 5

2.2. Creating Agents 9

http://www.pygame.org/docs/ref/draw.html
http://pygame.org/docs/ref/surface.html
http://stackoverflow.com/questions/68645/static-class-variables-in-python

Domination Game Documentation, Release 1.3.1

2.2.7 (Binary) Data

You might want to supply your agent with additional (binary) data, for example a Q/value table, or some kind of policy
representation. The convention for doing this is to pass an open file-pointer to the agent’s constructor:

Game(..., red_init={'blob': open('my_q_table','rb')})

This is also the way that your data will be passed to the agent in the web app. If you have stored your data as a pickled
file, you can simply read it with:

In class Agent
def __init__(..., blob=None):

if blob is not None:
my_data = pickle.reads(blob.read())
blob.seek(0) #: Reset the filepointer for the next agent.

if you omit this, the next agent will raise an EOFError

Of course, the way you store your data in this file is up to you, you can store it in any format, and even read it
line-by-line if you want.

2.3 Using Scenarios

Because most usage of the game will be more or less the same, some stuff has been automated in the form of a
Scenario. Scenarios offer a way to define settings and score conditions, and automatically save the results of repeated
runs.

For example, we subclass the Scenario module from domination.run:

import domination

class MyScenario(domination.run.Scenario) :
REPEATS = 10
SETTINGS = core.Settings()
FIELD = core.FieldGenerator().generate()

def before_each():
Regenerate the field before each game.
self.FIELD = core.FieldGenerator().generate()

We can now run our scenario and save the results:

ms.one_on_one('agent_one.py', 'agent_two.py', output_folder='results')

2.3.1 Reference

class domination.run.Scenario
A scenario is used to run multiple games under the same conditions.

SETTINGS = Settings()
The settings with which these games will be played

GENERATOR = <domination.core.FieldGenerator object>
Will generate FIELD before each game if defined

FIELD = None
Will play on this field if GENERATOR is None

10 Chapter 2. Contents

Domination Game Documentation, Release 1.3.1

REPEATS = 2
How many times to repeat each game

SWAP_TEAMS = True
Repeat each run with blue/red swapped

setup()
Function is called once before any games

before_each()
Function that is run before each game. Use it to regenerate the map, for example.

after_each(game)
Function that is run after each game.

Parameters game – The previous game

classmethod test(red, blue)
Test this scenario, this will run a single game and render it, so you can verify the FIELD and SETTINGS.

Parameters

• red – Path to red agent

• blue – Path to blue agent

classmethod one_on_one(red, blue, output_folder=None)
Runs the set amount of REPEATS and SWAP_TEAMS if desired, between two given agents.

Parameters output_folder – Folder in which results will be stored

classmethod tournament(folder=None, agents=None, output_folder=None)
Runs a full tournament between the agents specified, respecting the REPEATS and SWAP_TEAMS set-
tings.

Parameters

• agents – A list of paths to agents

• folder – A folder that contains all agents, overrides the agents parameter.

• output_folder – Folder in which results will be stored.

2.4 Customizing the Field

Game fields are based on a tilemap where each tile can only be occupied by a single object. This means they can be
represented conveniently by an ASCII representation. You can instantiate fields from these ASCII representations as
well. Suppose we create a file field.txt with the following contents:

w w w w w w w w w w w w w w w w w
w _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ w
w R _ _ _ _ _ _ C _ _ _ _ _ _ B w
w _ _ _ _ w _ _ _ _ _ w _ _ _ _ w
w _ _ _ _ w w w w w w w _ _ _ _ w
w _ _ _ _ w _ _ _ _ _ w _ _ _ _ w
w R _ _ _ _ _ _ A _ _ _ _ _ _ B w
w _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ w
w w w w w w w w w w w w w w w w w

We can then load it up using the domination.core.Field.from_string() function, the map defined aboves
looks like the image below:

2.4. Customizing the Field 11

Domination Game Documentation, Release 1.3.1

field = core.Field.from_string(open('field.txt').read())
core.Game(field=field).run()

The default maps are randomly generated using the FieldGenerator class, it has a number of paramters for
generating maps.

class domination.core.FieldGenerator(width=41, height=24, tilesize=16, mirror=True,
num_red=6, num_blue=6, num_points=3, num_ammo=6,
num_crumbsource=0, wall_fill=0.4, wall_len=(3, 7),
wall_width=4, wall_orientation=0.5, wall_gridsize=6)

Generates field objects from random distribution

Create a FieldGenerator object with certain parameters for a random distribution of fields.

Parameters

• width – The width of the field in tiles

• height – The height of the field in tiles

• tilesize – The size of each tile (don’t change from 16)

• mirror – Make a symmetrical map

• num_blue – The number of blue spawns

• num_red – The number of red spawns

• num_points – The number of controlpoints

• num_ammo – The number of ammo locations on the map

• num_crumbsource – The number of crumb fountains

• wall_fill – What portion of the map is occupied by walls

• wall_len – A range for the length of wall sections (min, max)

• wall_width – The width of each wall section

• wall_orientation – The probability that each wall will be placed horizontally i.e. that
the walls length will be along a horizontal axis

• wall_gridsize – Place walls only at every n-th tile with their top-left

generate()
Generates a new field using the parameters for random distribution set in the constructor.

Returns A Field instance.

12 Chapter 2. Contents

Domination Game Documentation, Release 1.3.1

2.5 Utilities

This module holds functions, exceptions and constants that are or might be used by both the game, renderer and
perhaps the agents. By putting this code in a separate module, each of them can access it without requiring the other
modules.

domination.utilities.frange(limit1, limit2=None, increment=1.0)
Like xrange, but for real numbers.

domination.utilities.mean(iterable)
Returns mean of given list or generator.

domination.utilities.stdev(iterable)
Returns standard deviation of given list or generator.

>>> stdev([1,2,3])
1.0

domination.utilities.point_add(a, b)
Add the coordinates of two points (Inline this if you can, function calls are slow)

domination.utilities.point_sub(a, b)
Subtract two 2d vectors (Inline this if you can, function calls are slow)

domination.utilities.point_mul(a, f)
Multiply a vector by a scalar (Inline this if you can, function calls are slow)

domination.utilities.point_dist(a, b)
Distance between two points.

domination.utilities.line_intersects_rect(p0, p1, r)
Check where a line between p1 and p2 intersects given axis-aligned rectangle r. Returns False if no intersection
found. Uses the Liang-Barsky line clipping algorithm.

>>> line_intersects_rect((1.0,0.0),(1.0,4.0),(0.0,1.0,4.0,1.0))
((0.25, (1.0, 1.0)), (0.5, (1.0, 2.0)))

>>> line_intersects_rect((1.0,0.0),(3.0,0.0),(0.0,1.0,3.0,1.0))
False

domination.utilities.line_intersects_circ((p0x, p0y), (p1x, p1y), (cx, cy), r)
Computes intersections between line and circle. The line runs between (p0x,p0y) and (p1x,p1y) and the circle
is centered at (cx,cy) with a radius r. Returns False if no intersection is found, and one or two intersection
points otherwise. Intersection points are (t, (x, y)) where t is the distance along the line between 0-1. (From
stackoverflow.com/questions/1073336/circle-line-collision-detection)

>>> line_intersects_circ((0,0), (4,0), (2,0), 1)
[(0.25, (1.0, 0.0)), (0.75, (3.0, 0.0))]

>>> line_intersects_circ((0,0), (2,0), (2,0), 1)
[(0.5, (1.0, 0.0))]

>>> line_intersects_circ((0,0), (0,1), (2,0), 1)
False

domination.utilities.line_intersects_grid((x0, y0), (x1, y1), grid, grid_cell_size=1)
Performs a line/grid intersection, finding the “super cover” of a line and seeing if any of the grid cells are
occupied. The line runs between (x0,y0) and (x1,y1), and (0,0) is the top-left corner of the top-left grid cell.

2.5. Utilities 13

Domination Game Documentation, Release 1.3.1

>>> line_intersects_grid((0,0),(2,2),[[0,0,0],[0,1,0],[0,0,0]])
True

>>> line_intersects_grid((0,0),(0.99,2),[[0,0,0],[0,1,0],[0,0,0]])
False

domination.utilities.rect_contains_point(rect, point)
Check if rectangle contains a point.

domination.utilities.rect_offset(rect, offset)
Offsets (grows) a rectangle in each direction.

domination.utilities.rect_corners(rect)
Returns cornerpoints of given rectangle.

>>> rect_corners((1,2,1,3))
((1, 2), (2, 2), (2, 5), (1, 5))

domination.utilities.rects_bound(rects)
Returns a rectangle that bounds all given rectangles

>>> rects_bound([(0,0,1,1), (3,3,1,1)])
(0, 0, 4, 4)

domination.utilities.rects_merge(rects)
Merge a list of rectangle (xywh) tuples. Returns a list of rectangles that cover the same surface. This is not
necessarily optimal though.

>>> rects_merge([(0,0,1,1),(1,0,1,1)])
[(0, 0, 2, 1)]

domination.utilities.angle_fix(theta)
Fixes an angle to a value between -pi and pi.

>>> angle_fix(-2*pi)
0.0

domination.utilities.reachable(grid, (x, y), border=1)
Performs a ‘flood fill’ operation to find reachable areas on given tile map from (x,y). Returns as binary grid with
1 for reachable.

Parameters border – can be a value or a function indicating borders of region

>>> reachable([[0,1,0],[0,1,0]], (0,0))
[[1, 0, 0], [1, 0, 0]]

domination.utilities.make_nav_mesh(walls, bounds=None, offset=7, simplify=0.001,
add_points=[])

Generate an almost optimal navigation mesh between the given walls (rectangles), within the world bounds (a
big rectangle). Mesh is a dictionary of dictionaries:

mesh[point1][point2] = distance

domination.utilities.find_path(start, end, mesh, grid, tilesize=16)
Uses astar to find a path from start to end, using the given mesh and tile grid.

>>> grid = [[0,0,0,0,0],[0,0,0,0,0],[0,0,1,0,0],[0,0,0,0,0],[0,0,0,0,0]]
>>> mesh = make_nav_mesh([(2,2,1,1)],(0,0,4,4),1)
>>> find_path((0,0),(4,4),mesh,grid,1)
[(4, 1), (4, 4)]

14 Chapter 2. Contents

CHAPTER 3

Quickstart

If you’re not going to read any of the other documentation, just do the following.

1. Copy and modify the basic agent found in the source code (agent.py).

2. Make sure your folder structure looks like this (you only need the domination module):

3. Create another file, put the following code in there, and run it:

from domination import core, run

class MyScenario(run.Scenario):
REPEATS = 10
SETTINGS = core.Settings(max_steps=100)

MyScenario.test(red='my_agent.py', blue='domination/agent.py')

15

https://github.com/noio/Domination-Game/blob/master/domination/agent.py

Domination Game Documentation, Release 1.3.1

16 Chapter 3. Quickstart

CHAPTER 4

Indices and tables

• genindex

• search

17

Domination Game Documentation, Release 1.3.1

18 Chapter 4. Indices and tables

Python Module Index

d
domination.utilities, 13

19

Domination Game Documentation, Release 1.3.1

20 Python Module Index

Index

Symbols
__init__() (domination.agent.Agent method), 7

A
action() (domination.agent.Agent method), 9
after_each() (domination.run.Scenario method), 11
ammo_blue (domination.core.GameStats attribute), 5
ammo_red (domination.core.GameStats attribute), 5
angle_fix() (in module domination.utilities), 14

B
before_each() (domination.run.Scenario method), 11
blue (domination.core.Game attribute), 4

C
CAPTURE_MODE_FIRST (in module domina-

tion.core), 6
CAPTURE_MODE_MAJORITY (in module domina-

tion.core), 6
CAPTURE_MODE_NEUTRAL (in module domina-

tion.core), 6

D
deaths_blue (domination.core.GameStats attribute), 5
deaths_red (domination.core.GameStats attribute), 5
debug() (domination.agent.Agent method), 9
domination.utilities (module), 13

E
ENDGAME_CRUMBS (in module domination.core), 6
ENDGAME_NONE (in module domination.core), 6
ENDGAME_SCORE (in module domination.core), 6

F
FIELD (domination.run.Scenario attribute), 10
FieldGenerator (class in domination.core), 12
finalize() (domination.agent.Agent method), 9
find_path() (in module domination.utilities), 14
frange() (in module domination.utilities), 13

G
Game (class in domination.core), 3
GameStats (class in domination.core), 4
generate() (domination.core.FieldGenerator method), 12
GENERATOR (domination.run.Scenario attribute), 10

L
line_intersects_circ() (in module domination.utilities), 13
line_intersects_grid() (in module domination.utilities), 13
line_intersects_rect() (in module domination.utilities), 13
log (domination.core.Game attribute), 4

M
make_nav_mesh() (in module domination.utilities), 14
mean() (in module domination.utilities), 13

O
observe() (domination.agent.Agent method), 8
one_on_one() (domination.run.Scenario class method),

11

P
play() (domination.core.ReplayData method), 5
point_add() (in module domination.utilities), 13
point_dist() (in module domination.utilities), 13
point_mul() (in module domination.utilities), 13
point_sub() (in module domination.utilities), 13

R
reachable() (in module domination.utilities), 14
rect_contains_point() (in module domination.utilities), 14
rect_corners() (in module domination.utilities), 14
rect_offset() (in module domination.utilities), 14
rects_bound() (in module domination.utilities), 14
rects_merge() (in module domination.utilities), 14
red (domination.core.Game attribute), 4
REPEATS (domination.run.Scenario attribute), 10
replay (domination.core.Game attribute), 4
ReplayData (class in domination.core), 5
run() (domination.core.Game method), 4

21

Domination Game Documentation, Release 1.3.1

S
Scenario (class in domination.run), 10
score (domination.core.GameStats attribute), 4
score_blue (domination.core.GameStats attribute), 4
score_red (domination.core.GameStats attribute), 4
Settings (class in domination.core), 5
SETTINGS (domination.run.Scenario attribute), 10
setup() (domination.run.Scenario method), 11
stats (domination.core.Game attribute), 4
stdev() (in module domination.utilities), 13
steps (domination.core.GameStats attribute), 4
SWAP_TEAMS (domination.run.Scenario attribute), 11

T
test() (domination.run.Scenario class method), 11
think_time_blue (domination.core.GameStats attribute), 5
think_time_red (domination.core.GameStats attribute), 5
tournament() (domination.run.Scenario class method), 11

22 Index

	Intro
	Contents
	Running a Game
	Creating Agents
	Using Scenarios
	Customizing the Field
	Utilities

	Quickstart
	Indices and tables
	Python Module Index

